In our recent publication in npj Quantum Information we have demonstrated a chiral one-dimensional atom using a single semiconductor quantum dot in a tunable microcavity. In a chiral atom, photons propagating in one direction interact with the atom, while photons propagating in the other direction do not. Here, we achieve strong non-reciprocal absorption of single-photons, a single-photon diode. Proof that chirality arises from a single emitter is found in the nonlinear behaviour at low powers – light propagating in the backward direction of the diode is highly bunched.
One of the greatest challenges in quantum computing is scalability. Classical computing overcome this problem by integrating bilions of nm-scale fin field-effect transistors (FinFETs) on a silicon chip. Here, we operate a silicon FinFET as a hole spin qubit above 4 K. At this elevated temperature cooling power increases by order of magnitudes compared to typical qubit operation temperatures, such that on-chip integration with control electronics becomes feasible. We achieve fast electrical 3-axis control with speeds up to 150 MHz, single-qubit fidelities at the fault-tolerance threshold, and a Rabi quality factor greater than 87. The devices feature both industry compatibility and quality, yet are fabricated in a flexible and agile way accelerating future development. The work was published in Nature Electronics.