Quantum interference of identical photons from remote GaAs quantum dots

Recently published in Nature Nanotechnology, we demonstrate quantum interference between single photons from separate quantum dots. Such a demonstration has been attempted multiple times in the past decade and appeared challenging. The problem is the noise: the noise affects the photon creation process of different quantum dots in different ways. Thus, single photons created by separate quantum dots are sometimes distinguishable. Low-noise GaAs quantum dots are employed for our work, each operated in an independent cryostat. Single photons are created from two distant quantum dots and simultaneously sent to two inputs of a beamsplitter. Despite their (different) origins, the photons exhibit bunching in the beamsplitter output with 93% visibility: they are almost identical. Using an optical CNOT operation, we achieve high-fidelity entanglement between photons from two quantum dots. Our results establish low-noise GaAs quantum dots as interconnectable sources of identical photons.

Quantum interference of identical photons from remote GaAs quantum dots
Share this post